

dV/dt - Accelerating the Rate of Progress towards Extreme Scale Collaborative Science

Funded by DOE under the Scientific Collaborations at Extreme-Scales Program

3 year project (Fall 2012)

- Lead Institution: University of Wisconsin Madison Lead PI: Miron Livny
- Co-Pls:
- William Allcock, U-Chicago, Argonne National Laboratory
- Douglas Thain, University of Notre Dame
- Frank Wuerthwein, University of California—San Diego
- Ewa Deelman, University of Southern California

Thesis

- Researchers come together into dynamic collaborations and employ a number of applications, software tools, data sources, and instruments
- They have access to a growing variety of processing, storage and networking resources
- Goal: "make it easier for scientists to conduct large-scale computational tasks that use the power of computing resources they do not own to process data they did not collect with applications they did not develop"

Challenges today

- Estimate the application resource needs
- Find the appropriate computing resources
- Acquire those resources
- Deploy the applications and data on the resources
- Manage applications and resources during run

Approach

- A planning framework that covers the entire spectrum of computing resources processing, storage, networking, and software
- The framework that encompasses the five phases of collaborative computing—estimate, find, acquire, deploy, and use

Experimental Foundation

- Real-world applications
- State of the art computing capabilities—ALCF and OSG
- Campus resources at ND, UCSD and UW
- Commercial cloud services
- Experimentation from the point of view of a collaboration member: "submit locally and compute globally"
- Pay attention to the cost involved in acquiring the resources and the human effort involved in software and data deployment and application management

Applications:

Portal Generated Workflows/ use Makeflow WMS

Applications in bioinformatics, molecular dynamics

Periodograms: generate an atlas of extra-solar planets

- Find extra-solar planets by
 - Wobbles in radial velocity of star, or
 - Dips in star's intensity

210k light-curves released in July 2010 Apply 3 algorithms to each curve 3 different parameter sets

- 210K input, 630K output files
- 1 super-workflow
- 40 sub-workflows
- ~5,000 tasks per sub-workflow
- 210K tasks total

Pegasus managed workflows

Southern California Earthquake Center

239 Workflows

- Each site in the input map corresponds to one workflow
- Each workflow has:
- ♦ 820,000 tasks

MPI codes ~ 12,000 CPU hours, Post Processing 2,000 CPU hours Data footprint ~ 800GB

CyberShake PSHA Workflow

Description

♦ Builders ask seismologists: "What will the peak ground motion be at my new building in the next 50 years?"

♦ Seismologists answer this question using Probabilistic Seismic Hazard Analysis (PSHA)

Pegasus managed workflows

Workflow Ensembles

System Entities

- WF instance: the workflow that a user submits, has information about computations do be done and their data dependencies (WMS-specific)
- WF structure—abstract representation of the workflow (WMS-independent)
- Provisioning profile—resources needed by WF tasks (WF-independent)
- Provisioning plan
 resources to be provisioned over time (WF-dependent)
- Schedule

 mapping of tasks to resources (WF-dependent)

WF Instances

Task Characterization/Execution

- Understand the resource needs of a task
- Establish expected values and limits for task resource consumption
- Launch tasks on the correct resources
- Monitor task execution and resource consumption, interrupt tasks that reach limits
- Possibly re-launch task on different resources

Monitoring/Modeling of tasks

- exit_type / exitcode, "signalled", "limit"
- signal -- The number of the signal that terminated the process.
- limits_exceeded List of all the resource limits that were exceeded by the process
- max_concurrent_processes--The maximum number of processes that ran concurrently.
- cpu_time/ wall time
- peak virtual_memory/resident_memory
- bytes_read/bytes_written

Values available if a Working Directory is specified

- workdir_number_files_dirs-- The peak value of the number of files and directories in the working directory.
- workdir_footprint---The peak value of the size of all files and directories in the working directory.

Data Collection and Modeling

Static Workflow Monitoring

flow specification

resource control

flow execution

Static Workflow Monitoring

flow specification

resource control

flow execution

Working on making the tools generic

Portal Generated Workflows

BLAST (Small) 17 sub-tasks ~4h on 17 nodes

BWA 825 sub-tasks ~27m on 100 nodes

Experimental design

- Characterize a set of applications, run large number of instances, develop application models
- Design synthetic applications with a desired behavior (CPU consumption, Mem, I/O)
 - Run a large number of instances
 - Model task and application behavior
 - See if the model matches the input
 - See if the system responds appropriately
- Experimental platform:
 - Open Science Grid (with glideinWMS)
 - Argonne Leadership Computing Facility
 - ND/Center for Research Computing, UW, UCSD
 - Clouds

Conclusions

- dV/dt will develop a planning framework to
 - characterize and manage applications
 - provision resources/monitor execution/adapt
- Provide methodologies, algorithms, and prototype solutions
- Initial focus on application resource characterization and monitoring
- https://sites.google.com/site/acceleratingexascale/